博士研究生导师

当前位置: 首页 -> 团队队伍 -> 硕博导师 -> 智能建造与工程软件系 -> 博士研究生导师 -> 正文

左明健

来源:太阳成tyc33455ccwww 发布日期:2024-12-13 浏览量:



姓名:左明健 Zuo Mingjian

研究方向:系统与可靠性建模和分析

可靠性设计优化

维护决策优化

设备状态监测与故障诊断

设备智能运维和健康管理


个人简介:


左明健,太阳成tyc33455ccwww特聘教授、博士生导师。加拿大工程院院士、青岛明思为科技有限公司董事长兼首席科学家、加拿大阿尔伯塔大学名誉教授(Professor Emeritus)。入选了电气与电子工程师学会会士(IEEE)、国际工程资产管理学会创始会士(ISEAM)、工业和系统工程师学会会士(IISE)、故障预测与健康管理学会会士(PHMS)、国际振动与噪声协会杰出会士(IIAV)、亚太人工智能学会会士(AAIA)、以及国际人工智能产业联盟会士(AIIA)。兼任中国系统工程学会常务理事、期刊《Journal of Reliability Science and Engineering》共同主编(Co-Editor-in-Chief)


在可靠性理论、维护优化方法、及系统状态监测和故障诊断等领域获得了众多出色的研究成果。荣获IEEE可靠性学会终身成就奖。作为项目负责人承担过50多项科研项目,发表SCI期刊论文300多篇,学术会议论文300多篇,学术专著5部,截止至202410月,谷歌学术H 指数 87,总引用 29,000 多次。做过多次国际学术会议大会主旨报告,担任过多个学术期刊的编辑或编委,指导培养了硕博研究生和博士后一百多人。


教育背景:


博士:美国,Iowa State University,工业工程系,198912

硕士:美国,Iowa State University,工业工程系,19868

学士:中国,山东理工大学,农业机械化系,1982 7


工作履历:


202411-现在:太阳成tyc33455ccwww,特聘教授

20215-现在:青岛明思为科技有限公司,董事长兼首席科学家

20248-现在:加拿大阿尔伯塔大学机械工程系,名誉教授(Professor Emeritus)

19997-20247月:加拿大阿尔伯塔大学机械工程系,教授,可靠性实验室主任

20151-20161月:电子科技大学(成都),机电学院经理

20011-20018月:美国德州农工大学工业工程系,访问教授

19967-19986月:香港城市大学制造工程与管理系,副教授

19937-19996月:加拿大阿尔伯塔大学机械工程系,副教授

199610-199611月:日本东京理科大学管理工程系,访问教授

19907-19936月:加拿大阿尔伯塔大学机械工程系,助理教授

19898-19906月:加拿大温莎大学工业工程系,助理教授



代表性科研项目:


1. 基于新一代人工智能的高端装备智能运维理论与方法,2024/07-2026/06,四川省科技计划骈骥项目,项目负责人

2. Intelligent Reliability Assurance Using Dynamics Modeling and Machine Learning2021/04-2026/03National Science and Engineering Research Council of Canada Discovery Grant(加拿大),项目负责人

3. 高速列车运行风险评估及调控基础理论与方法,2019 /01-2023/12,国家自然科学基金重点项目,课题负责人

4. 物理知识与运行数据驱动的重大装备异常检测与故障诊断,2019/01-2022/12,国家重点研发计划项目,子课题负责人

5. 多重不确定因素下的智能电网风险调度理论与方法研究,2016/01-2020/12,国家自然科学基金重点项目,课题负责人

6. 行星齿轮传动系统故障诊断与动态可靠性评估研究,2014/01-2017/12,国家自然科学基金面上项目,项目负责人

7. Decision support system for improved construction and maintenance of non-electrical infrastructure for energy2017/04-2023/09Canada First Research Excellence Fund(加拿大), 课题负责人

8. Wind farm operation and grid integration 2017/04-2023/09Canada First Research Excellence Fund(加拿大),课题负责人


代表性论文:


1. Ting Ai, Zhiliang Liu, Jiyang Zhang, Honghao Liu, Yaqiang Jin, Mingjian Zuo. “Fully simulated-data-driven transfer-learning method for rolling-bearing-fault diagnosis.” IEEE Transactions on Instrumentation and Measurement. 2023/08/04.

2. Feiyang Pan, Zhiliang Liu, Liyuan Ren, Mingjian Zuo. “Adaptive Local Flaw Detection Based on Magnetic Flux Leakage Images with a Noise Distortion Effect for Steel Wire Ropes.” IEEE Transactions on Industrial Electronics, 2023/5/10.

3. Huan Wang, Zhiliang Liu, Dandan Peng, Mingjian Zuo, “Interpretable convolutional neural network with multilayer wavelet for Noise-Robust Machinery fault diagnosis”, Mechanical Systems and Signal Processing, Vol. 195, pp. 110314, 15 July 2023.

4. Yuejian Chen and Ming J. Zuo. “A sparse multivariate time series model-based fault detection method for gearboxes under variable speed condition.” Mechanical Systems and Signal Processing, Vol. 167, 108539, March 15, 2022.

5. Xingkai Yang, Ming J. Zuo, and Zhigang Tian. "Development of crack induced impulse-based condition indicators for early tooth crack severity assessment." Mechanical Systems and Signal Processing. Vol. 165, 108327, 2022.

6. Xingkai Yang, Peng Zhou, Ming J. Zuo, Zhigang Tian. “Normalization of gearbox vibration signal for tooth crack diagnosis under variable speed conditions.” Quality and Reliability Engineering International, First published: 03 DEC 2021 https://doi.org/10.1002/qre.3029.

7. Miaofen Li, Tianyang Wang, Fulei Chu, Qinkai Han, Zhaoye Qin, and Ming J Zuo. “Scaling-basis Chirplet transform.” IEEE Transactions on Industrial Electronics. ‏68 (9): 8777-8788, SEP 2021.

8. Dongdong Wei, Te Han, Fulei Chu, and Ming J. Zuo. “Weighted domain adaptation networks for machinery fault diagnosis.” Mechanical Systems and Signal Processing, 158, Article Number: 107744, Published: SEP 2021.

9. F. Koenig, J. Marheineke, G. Jacobs, C. Sous, M. J. Zuo, and Z. G. Tian. “Data-driven wear monitoring for sliding bearings using acoustic emission signals and long short-term memory neural networks.” Wear, Volume: 476, Special Issue: SI, Article Number: 203616, 2021.

10. Peng Zhou, Zhike Peng, Shiqian Chen, Zhigang Tian, Ming J. Zuo. “Sinusoidal FM patterns of fault-related vibration signals for planetary gearbox fault detection under non-stationary conditions.” Mechanical Systems and Signal Processing. ‏155, Article # 107623, Published: 2021

11. Siqi Wang, Xian Zhao, Zhigang Tian, and Mingjian Zuo. “Optimum component reassignment for balanced systems with multi-state components operating in a shock environment.” Reliability Engineering & System Safety, Volume: 210, Article Number: 107514, Published: ‏ JUN 2021

12. Yifan Li, Ming J. Zuo, Zaigang Chen, and Jianhui Lin. “Railway bearing and cardan shaft fault diagnosis via an improved morphological filter.” Structural Health Monitoring 19 (5), 1471-1486, September 2020.

13. Meng Rao, Qing Li, Dongdong Wei, and Ming J. Zuo. “A deep bi-directional long short-term memory model for automatic rotating speed extraction from raw vibration signals.” Measurement. Volume 158, Article Number 107719, Published JUL 1 2020.

14. Jia Wang, Zhigang Li, Guanghan Bai, Ming J Zuo. “An improved model for dependent competing risks considering continuous degradation and random shocks.” Reliability Engineering & System Safety, Volume: 193, Article Number: 106641, Published: JAN 2020.

15. Wentao Mao, Jianliang He, Ming J. Zuo. “Predicting remaining useful life of rolling bearings based on deep feature representation and transfer learning.” IEEE Transactions on Instrumentation and Measurement. Volume: 69, Issue: 4, Pages: 1594-1608, Part: 2, Published: APR 2020.

16. Yaguo Lei, Jing Lin, Zhengjia He, Ming J. Zuo. “A review on empirical mode decomposition in fault diagnosis of rotating machinery.” Mechanical Systems and Signal Processing. 35 (1-2): 108-126, DOI: 10.1016/j.ymssp.2012.09.015, FEB 2013.



发明专利:


1. 靳亚强, 饶猛, 刘立斌, 左明健. 基于高斯混合模型的机械设备状态检测的方法: ZL202310012418.3[P]. 2023-07-04.

2. 刘立斌, 孙吉磊, 左明健. 基于WiFi无线温振传感器的同步时间采样方法、系统及介质: ZL202210226595.7[P]. 2023-06-27.

3. 饶猛, 左明健. 一种基于神经网络的变转速工况下旋转机械故障分类方法: ZL202211243455.7[P]. 2023-02-03.

4. 刘志亮, 康金龙, 孙文君, 左明健. 基于降噪自动编码器及增量学习的旋转机械故障诊断方法;ZL201810987112.9[P]. 2020-05-26.

5. Wei-Chang Yeh, Ming-Jian Zuo. Traffic Network Reliability Evaluation Method and System Thereof: US10,235,876 B[P]. 2019-03-19


联系方式:

邮箱:zuo.mingjian@sdu.edu.cn

微信号:mingjzuo


下一条:褚开维

地址:山东省济南市二环东路12550号太阳成tyc33455ccwww兴隆山校区
版权所有:中国·太阳成集团tyc33455cc(股份)有限公司-官方网站
电话:0531-86358717

[网站管理]